Blogia
altermediareflexiones

Se Aprende De Lo Bueno Y Uno Se Hace Inteligente Aprendiendo

Estudios neurocientíficos sobre el proceso de aprendizaje y construcción de inteligencia, se señala un estudio parcial con conclusiones muy parciales y potencialmente erradas:

 

Explican por qué el ser humano aprende más de sus aciertos que de sus errores

 

El cerebro asimila lo que hacemos bien, no lo que hacemos mal

Equivocarse es humano pero no nos sirve de mucho, porque de lo que aprendemos es de los aciertos. Esto es lo que sugieren los resultados de una investigación sobre el cerebro realizada por científicos del MIT, en la que se constató que dos regiones cerebrales concretas se activan sólo cuando hacemos las cosas bien, y no cuando las hacemos mal. Dado que las áreas activas están vinculadas con el aprendizaje y la memoria, los científicos afirman que sólo aprenderíamos de los aciertos. Por Yaiza Martínez.

Imágenes utilizadas en el experimento, y que fueron mostradas a los monos para que éstos miraran a derecha o izquierda a cambio de una recompensa. Fuente: MIT.
Imágenes utilizadas en el experimento, y que fueron mostradas a los monos para que éstos miraran a derecha o izquierda a cambio de una recompensa. Fuente: MIT.
Tropezar dos veces en la misma piedra es, al parecer, inevitable, al menos desde el punto de vista del cerebro. Esto es lo que sugieren los resultados de una investigación realizada por científicos del Picower Institute for Learning and Memory del MIT.

Earl K. Miller, profesor de dicho instituto, y sus colaboradores, Mark Histed y Anitha Pasupathy, consiguieron generar por vez primera una instantánea del proceso de aprendizaje de unos monos.

En esta imagen se pudo ver cómo las células individuales del cerebro no responden igual ante la información sobre una acción correcta que ante la información sobre una acción errónea.

Según explica el profesor Miller en un comunicado emitido por el MIT, lo que se ha demostrado es que las células del cerebro, cuando una acción genera un buen resultado, se sincronizan con lo que el animal está aprendiendo. Por el contrario, después de un error, no se produce ningún cambio en el cerebro ni se transforma en nada el comportamiento de los animales.

Esta investigación ayudaría a comprender mejor los mecanismos de plasticidad neuronal activados como respuesta al entorno, y tendría implicaciones para el entendimiento de cómo aprendemos, y también en la comprensión y el tratamiento de los trastornos de aprendizaje. La plasticidad neuronal es la capacidad del cerebro de cambiar a partir de la experiencia.

Cómo se hizo

A los monos estudiados se les asignó la tarea de mirar dos imágenes alternantes en la pantalla de un ordenador. Cuando aparecía una de ellas, los monos eran recompensados si giraban su mirada hacia la derecha; cuando aparecía la otra imagen, los monos eran recompensados si miraban a la izquierda.

Los animales fueron tanteando, por el sistema de “prueba y error”, para descubrir qué imágenes exigían mirar en qué dirección.

Gracias a las mediciones realizadas entretanto en sus cerebros, los investigadores descubrieron que, dependiendo de si las respuestas de los monos eran correctas o incorrectas, ciertas partes de sus cerebros “resonaban” con las implicaciones de sus respuestas, durante algunos segundos.

Así, la actividad neuronal que seguía a una respuesta correcta y su recompensa correspondiente ayudaban a los monos a realizar mejor la siguiente tarea.

Por tanto, explica Miller, justo después de un acierto, las neuronas procesaban la información más deprisa y más efectivamente, y el mono tendía más a acertar la siguiente respuesta.
Sin embargo, después de un error no había mejoría alguna en el desempeño de las tareas. En otras palabras, sólo después del éxito, y no de los fracasos, tanto el comportamiento de los monos como el procesamiento de información de los cerebros de éstos mejoraron.

Dos regiones cerebrales implicadas

Según explican los científicos en la revista especializada Neuron-9 , para aprender de la experiencia se necesita saber si una acción pasada ha producido un buen resultado.

Se cree que la corteza prefrontal del cerebro y los ganglios basales juegan un importante papel en el aprendizaje de las relaciones entre estímulo y respuesta.

La corteza prefrontal del cerebro dirige los pensamientos y las acciones de acuerdo con objetivos internos, mientras que los ganglios basales están relacionados con el control motor, la cognición y las emociones.

Gracias a la presente investigación se sabe ahora, además, que ambas áreas cerebrales cuentan con toda la información disponible para llevar a cabo las conexiones y ordenaciones neuronales necesarias para el aprendizaje.

Por otro lado, hasta ahora se sabía que los ganglios basales y la corteza prefrontal están conectados entre sí y con el resto del cerebro, y que nos ayudan a aprender las asociaciones abstractas mediante la generación de breves señales neuronales, cuando una respuesta es correcta o incorrecta.

Pero, hasta ahora, no se había podido entender cómo esta actividad transitoria, que se produce en menos de un segundo, podía influir en acciones realizadas a continuación.

Más información transmitida

Gracias a este estudio, los investigadores descubrieron actividad en muchas neuronas dentro de ambas regiones del cerebro, como respuesta a la entrega o no de la recompensa. Esta actividad duró varios segundos, hasta la siguiente prueba.

Las respuestas de las neuronas de los monos fueron, por otra parte, más fuertes si en la prueba inmediatamente anterior habían sido recompensados, y más débiles si en la prueba anterior se habían equivocado.

Por último, tras una respuesta correcta, los impulsos eléctricos de las neuronas, tanto en la corteza prefrontal como en los ganglios basales, fueron más fuertes y transmitieron más cantidad de información.

Según Miller, esto explicaría porqué, en un nivel neuronal, tendemos a aprender más de nuestros aciertos que de nuestros fallos.

 

 

El nivel de inteligencia no depende del tamaño del cerebro

Un científico de la Universidad de Búfalo, especializado en el estudio de la interacción entre las diversas regiones del cerebro, propone que la llamada “plasticidad cognitiva” –o capacidad para aprender a mejorar nuestras habilidades cognitivas- dependería no del tamaño de nuestra corteza cerebral, sino de cómo se distribuyen e interactúan en ella los grupos de neuronas (o módulos corticales). Considerando estos elementos, asegura el científico, se podrían explicar las diferencias en la capacidad de aprender entre diversas especies, individuos e, incluso, estadios de desarrollo. Por Yaiza Martínez.

El número, la diversidad y el grado de interacción entre las neuronas determinan nuestra capacidad de aprender


Neuronas. Fuente: Wikimedia Commons.
Neuronas. Fuente: Wikimedia Commons.
Un psicólogo de la Universidad de Búfalo (Estados Unidos), especializado en estudiar cómo interactúan las diversas partes del cerebro, propone una teoría que podría explicar el origen de las diferencias en el grado de inteligencia de las personas.

Según publica la Association for Phychological Science (aps) estadounidense, el profesor Eduardo Mercado III, de dicha universidad, ha descrito cómo ciertos aspectos de la estructura y de la función cerebrales ayudarían a determinar el grado de facilidad que se tiene para aprender cosas nuevas, y cómo la capacidad de aprender contribuye a las diferencias individuales en el nivel de inteligencia.

Los resultados de sus investigaciones a este respecto han aparecido en la revista de la aps, Current Directions in Psychological Science, bajo el título “Cognitive Plasticity” (Plasticidad cognitiva).

El término “plasticidad cognitiva” hace referencia a la capacidad para aprender y mejorar nuestras habilidades cognitivas, como cuando aprendemos a resolver problemas o cuando recordamos cualquier detalle o evento.

Tal y como explica Mercado en su artículo, esta plasticidad, sin embargo, no es la misma en todos los casos: algunos organismos aprenden a calcular, acumulan conocimientos o se comunican con complejos mecanismos de comunicación, mientras que otros seres no son capaces de nada de esto.

¿Qué factores determinan las habilidades intelectuales a nivel cerebral?, se pregunta el científico. Mercado propone que la capacidad para adquirir nuevas habilidades cognitivas dependería y se reflejaría en tres características de la corteza cerebral (que es el manto de tejido nervioso que cubre la superficie de los hemisferios cerebrales): la disponibilidad en ella de circuitos corticales especializados; cierta flexibilidad en la coordinación de la actividad cortical; y la posibilidad de adaptación de las redes corticales.

Según el científico, este marco de elementos podría explicar las diferencias en la capacidad de aprender entre diversas especies, individuos e, incluso, estadios de desarrollo en un mismo individuo.

Módulos corticales

Aunque los mecanismos neuronales que determinan la capacidad de cualquier organismo de adquirir o de mejorar sus habilidades cognitivas aún no se conocen bien, se acepta de manera casi general que la corteza del cerebro resulta clave para las aptitudes intelectuales.

En esta misma línea, Mercado señala que la plasticidad cognitiva se correspondería, concretamente con los llamados módulos corticales.

Estos módulos han sido definidos por los neuroanatomistas como circuitos corticales compactos formados por columnas verticales de neuronas, que están interconectadas entre sí. Se calcula que, en el ser humano, cada una de estas columnas contiene alrededor de 2.500 neuronas.

Los módulos corticales pueden ser observados directamente, tanto con técnicas histológicas (estudio de los tejidos) como electrofisiológicas (estudio de los fenómenos eléctricos del organismo), por lo que se sabe que varían estructuralmente a través de las diversas regiones corticales, tanto en el número como en la diversidad de neuronas que contienen.

Pero Mercado propone identificarlos aún más, porque considera que su conocimiento ayudaría a comprender por qué se dan variaciones en la capacidad de adquirir nuevos conocimientos; por qué hay gente que aprende a mayor velocidad que otra y por qué nuestra capacidad de aprendizaje cambia a medida que envejecemos.

Diversidad e inteligencia

Hasta ahora, los estudios que han examinado a diversas especies han demostrado que, en general, una corteza mayor se corresponde con una mayor capacidad intelectual.

La razón para esta relación aún no está del todo clara, pero Mercado cree que una corteza más expansiva proporcionaría más espacio para que más cantidad y una mayor diversidad de módulos corticales se distribuyan.

En otras palabras, que en lo que se refiere a potencial intelectual, no sería el tamaño de la corteza cerebral lo que importa, sino de qué manera muchos módulos corticales (con diferentes tipos de neuronas) podrían encontrarse disponibles y listos para actuar e interactuar entre sí.

Estos rasgos de la organización cortical y de sus funciones determinarían el grado de efectividad del cerebro en el aprendizaje de nuevas habilidades cognitivas.

Se hereda y se aprende

Mercado señala, por otro lado, que una de las implicaciones de esta propuesta es que la experiencia puede resultar tan importante como la genética en la determinación de la capacidad intelectual.

Concretamente, los cambios estructurales de los módulos corticales generados por el desarrollo y las experiencias de aprendizaje podrían contribuir –de la misma forma que lo hacen algunos factores genéticos- a marcar las diferencias entre la inteligencia de un individuo y la de cualquier otro.

A medida que las redes de neuronas se desarrollan con el tiempo, su diversidad aumenta, con el correspondiente aumento de la plasticidad cognitiva, explica Mercado.

La comprensión de los mecanismos de los que depende la plasticidad cognitiva resulta fundamental para desarrollar nuevas tecnologías y prácticas educativas que potencien el desarrollo intelectual, frenen el deterioro cognitivo fruto del envejecimiento o ayuden a recuperar la capacidad de aprender habilidades cognitivas en el caso de pacientes con trastornos o disfunciones cerebrales.

Mercado dirige el Neural and Cognitive Plasticity Laboratory de la Universidad de Búfalo, en el que se trabaja para comprender cómo la experiencia guía la percepción y el pensamiento.




Estudios parciales claramente limitados con conclusiones potencialmente erradas:

0 comentarios